Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Biol ; 20(2): e3001535, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35143475

RESUMO

m6A methylation is the most abundant and reversible chemical modification on mRNA with approximately one-fourth of eukaryotic mRNAs harboring at least one m6A-modified base. The recruitment of the mRNA m6A methyltransferase writer complex to phase-separated nuclear speckles is likely to be crucial in its regulation; however, control over the activity of the complex remains unclear. Supported by our observation that a core catalytic subunit of the methyltransferase complex, METTL3, is endogenously colocalized within nuclear speckles as well as in noncolocalized puncta, we tracked the components of the complex with a Cry2-METTL3 fusion construct to disentangle key domains and interactions necessary for the phase separation of METTL3. METTL3 is capable of self-interaction and likely provides the multivalency to drive condensation. Condensates in cells necessarily contain myriad components, each with partition coefficients that establish an entropic barrier that can regulate entry into the condensate. In this regard, we found that, in contrast to the constitutive binding of METTL14 to METTL3 in both the diffuse and the dense phase, WTAP only interacts with METTL3 in dense phase and thereby distinguishes METTL3/METTL14 single complexes in the dilute phase from METTL3/METTL14 multicomponent condensates. Finally, control over METTL3/METTL14 condensation is determined by its small molecule cofactor, S-adenosylmethionine (SAM), which regulates conformations of two gate loops, and some cancer-associated mutations near gate loops can impair METTL3 condensation. Therefore, the link between SAM binding and the control of writer complex phase state suggests that the regulation of its phase state is a potentially critical facet of its functional regulation.


Assuntos
Núcleo Celular/metabolismo , Metiltransferases/metabolismo , RNA Mensageiro/metabolismo , Domínio Catalítico , Linhagem Celular Tumoral , Núcleo Celular/genética , Criptocromos/genética , Criptocromos/metabolismo , Células HEK293 , Células HeLa , Humanos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Metiltransferases/química , Metiltransferases/genética , Microscopia Confocal , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Mutação , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Ligação Proteica , RNA Mensageiro/genética , S-Adenosilmetionina/metabolismo , Proteína Vermelha Fluorescente
2.
Neurol Clin Pract ; 3(4): 334-340, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29473622

RESUMO

The role of the neurologist in the emergency department (ED) is constantly evolving and has become more diversified in recent times. This article gives an overview of different practice models that neurologists are employing to cover ED calls. A review of billing and coding for ED visits is also discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...